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In this paper we obtain solutions of problems concerning waves generated by a system of 
moving pressures applied to a free surface. We carry out an asymptotic analysis and study 
structures of the wave fields. 

The problem concerning nonstationary wave motions of a fluid under the action of a mov- 
ing system of periodic surface pressures was solved in [I, 2] for a region of constant depth. 
We consider this problem for a region of variable depth, using a method presented :in [3] in 
connection with a Cauchy-Poisson problem in which a mixed spectrum of characteristic values 
(continuous and discrete portions) was established and an expansion theorem was proved. 

The equations, boundary and initial conditions for the problem presented in [I, 2] are 
as follows : 

Aq~=0, 0 < r < o o ,  - - 1 5 < 0 < 0 ,  I z l < o o  , ~=~t2n ,  n = 2 m + t ,  (1 )  
m = 0, 1, 2 . . . .  ; 

q ~ t t i r  g q~o-- pl Pt, 0 = 0 ;  qDo=O, 0 = - - ~ ;  q~=O, q>t=---pl  Pc. 

0 = 0 ,  t = 0 ;  q ~ < ~ ,  r -+0 ;  q~-+0, ] / r~ i z 2 - + oo;  

n = - 7 ~ ' l ~ 1 7 6  FF' a . . . . .  
- -  r ~ ~7 r 2 60~ Oz z" 

Here ~ is the velocity potential; r, 0, z are cylindrical coordinates; t is the tirae; g is 
the free-fall acceleration; p is the fluid density; P and P0 are the pressures at an arbi- 
trary instant of time and at the initial instant, respectively; q is the form of the free 
surface (Fig. i). 

We examine the wave motion generated by a periodic moving system of surface pressures 
propagating in the direction of the normal to the curve of the shore and applied in a semi- 
infinite strip of width 2a, i.e., 

I~l>a. 
We construct a solution of problem (i) using the method of integral transforms [3]; how- 

ever, since the expansion theorem is valid for absolutely integrable functions, we introduce 
a regularizing factor (-~x) (~ > 0) for function P(x, z, t). After effecting the 1:ransfor- 
mations and passing to the limit as ~ + 0, we obtain the expression q = -P/pg + D c + qd, 
for waves on the free surface, where qc and qd are stipulated by the characteristic func- 
tions of the continuous and discrete spectra, respectively: 

~i'~ ~ ( 2 )  

~l = ap--g- D sin (s~a cos X) cos (8~z cos %) X 
�9 0 0 

D I �9 ~ [ 2o~2 (-- iot)--[- V ~  expi]/r~-s~t_ X exp (Aor) 

<o-V-~ 

~l a po n-1 
= ~ ~ etDz sin pa cos pz exp (Air) X ( 3 ) 

I = I  ~ 0 
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1 2~2 exp (-- io~t) + X 
X D A l + ik o) ~ -- gp ~ t~ o~ + V ~  

X exp i ~ cos I~ t r Z ~ ~  exp ( - -  i ] /gp  cos l~ t) dp .  

H e r e  D a n d  D E a r e  t h e  o p e r a t o r s  

-------!--I B(h z), Dz- -  ]--/~ B~z. 
D 2 ] / ~  2 ~ _ ]=o h=l j,Z=o = 

We give explicit formulas for the coefficients in the solution of problem (2), (3) in the 
Appendix. 

It was shown in [3] that the wave motion of a fluid over an inclined bottom is charac- 
terized by the presence of waves of continuous and discrete spectra, whereby the waves of 
continuous spectrum predominate at the equator far from the shoreline while those of the 
discrete spectrum are localized in the coastal zone. 

In studying waves of the continuous spectrum we employ the stationar 7 phase method (the 
large parameter is defined by the formula W = ~2Ra/g (R~ = ~r 2 + (z + (-l)~a) 2, ~ = 0; i)) 
and the Cauchy residue theorem for those integrals containing poles [2, 4]. As a result, at 
some distance from the region of pressures, we have the following for the form of the free 
surface: 

1 

~1~ ~-- P~176 -~  ~=o z + ( -  0 %  X ( 4 )  

( 1/] [D1/2r~ t exp - -  - -  r sm ahj + 

f o r  Rkj  < u 0 t  ( o p e r a t o r  D O i s  d e f i n e d  i n  S e c .  2 o f  t h e  A p p e n d i x ) ,  

~]r = 0 (R~ "'~) fo r  Rhj > Uot , 
"g  , 

where Rsj = ]/rr~ cos ~ akj + (z + ( - -  1)%)2; u o - -  ~ ,  

o( ) 
Ao g s i n a a , j ,  + (-- t ) ~ ' ~  c osa k j c osa w j ,  �9 

Thus, motion of the fluid, stipulated by waves of the continuous spectrum, is divided 
into two groups, consisting of m + 1 families, each situated at a distance of 2a from one 
another. A family in a group is characterized by a definite value of the expression Icos 
akj I . The wave field described by a family is separated into two regions. The boundary be- 
tween them represents a portion of an ellipse with equation Rkj = u0t and with minor axis 
on the shoreline at the points z = • + u0t. This elliptical curve moves with speed u0, 
staying similar to itself and receding from the region of application of the system of pres- 
suresl All the elliptic curves exit from two moving points on the shore, z = • + u0t, and 
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are tilted to the side of the z = 0 axis. For the family characterized by the expression 
(cos i[ = i the elliptic curve converts into a portion of a circle. A family with Icos 
akj[ ak~ is present for an arbitrary angle of inclination ~ of the bottom; when $ = ~/2, 

which corresponds to an infinitely deep fluid, this family completely defines the wave 
picture of the motion. As ~ decreases, the number of elliptic curves increases and their 
eccentricity tends to increase. As ~ § 0, the number of curves increases without bound and 
the outer curve tends towards a halfline parallel to the x axis. Inside a region bounded 
by an elliptic curve there propagate progressive waves, which decay according to the law 
R~ 112 for small r and according to an exponential law for large r. Outside of this region 
there propagate rapidly decaying waves according to the law R~ 2 for small r and according 
to an exponential law for large r. For a family with [cos akj [ = 1 exponential factors in 

the decay exponent are equal to I, and inside a region bounded by an arc of the circle 

/r 2 + (z + (-l)aa)r = u0t there propagate progressive waves decaying according to the law R~ ~/2, 
and outside this region according to the law R~ 2. 

The wave picture resulting from superimposing 2(m + i) families can be characterized 
as follows: in region I, bounded by an arc of the circle r 2 + (z - a) 2 = u02t 2 and the 
shoreline, at a sufficient distance from the region of pressures and the shoreline, there 
propagate progressive waves decaying according to the law R~ I/2; in region III, being the 
exterior of the elliptic curve r 2 sin2~ + (z + a) 2 = u~t 2 , there propagate progressive 
waves, decaying rapidly (according to the law R~2); region II represents a transition re- 
gime from waves of one type to waves of the other type. 

Figure 2 shows boundaries of the regions for B = ~/i0. In this case m = 2 and the 
wave picture consists of the superposition of two groups, each containing up to three fam- 
ilies of waves. To each family there corresponds a moving boundary: either a portion of 
an elliptic curve (curves 2, 2', 3, 3') or an arc of a circle (curves i, i'). Region I is 
bounded above by an arc of a circle, while region III is bounded on the left by a portion 
of an elliptic curve. 

We proceed now to study the wave motion stipulated by waves of the discrete spectrum. 
We consider the coastal zone characterized by small r. Studying ~d, we find, analogous to 
waves of the continuous spectrum, 

d pOlO n-~ cz 
- A ~  ~z~lt. ( 5 )  ~1 4~pg 1=1 

Here qd may be calculated from the formulas 

1 

~-------f~ for - - a - 6 u l t < z < a + u , t ,  ~l~=O(z -~/~) for z > a q - u F ,  

I ~ ' ~ ' 4 n i - - D t _  g cos l~ A l* + ~k D ~ ( t ) e x p  i g c o s / ~  (zq-  ( - - t )~a )  - - ~ t  , 

A* (~ g cos ll3 
g c o s / ~  sin (ahj q- I~), ut 2r 

As a result of superposition of all the components, we obtain the following ~ave pic- 
I 

ture: qd is calculated from formula (5), where ~d ~ (__i)=I= for z < --a + Un_it ; for l----- 

!--a + Un_It< z < a + u2t we have the transition regime, namely: the gradual vanishing of 
components from the total sum, and Nd = O(z-~12) for z > a + u2t (u 2 = g cos 2~/2~,, Un_ l = 
g sin B/2~0). 

In the coastal zone (r § 0), among the m component waves of the discrete spectrum, the 
defining wave is the Stokes wave (s = n - i). The wave motion corresponding to it has the 
form 

~l d P~ l~ = ~ e,,_~,~_~. 

H e r e  ~d_~ i s  t h e  t e r m  s t i p u l a t e d  by  t h e  n - 1 v a l u e  o f  t h e  d i s c r e t e  s p e c t r u m ,  
e x p r e s s i o n s  

( 6 )  

given by the 
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for z ~  --  a + Un_lt, 

d ~ J ~ '  J c t g ~ + i k g  { ( J )} 
~n_~__2uisi---~-~--l,~_l~tg-~-~k~g ~ exp i ~ ( z = a ) - - ~ t  for - - a  + 

+ u n _ l t ~ z ~ a J c u n _ l  t, ~g - l=O(z -~  2) for z~>a+ un_lt. 

Analogous  t o  waves o f  t h e  c o n t i n u o u s  s p e c t r u m ,  t h e  f l u i d  mo t ion  s t i p u l a t e d  by waves o f  
t h e  d i s c r e t e  s p e c t r u m  amounts  t o  a s u p e r p o s i t i o n  o f  m wave s t r u c t u r e s  in  t h e  c o a s t a l  zone .  
Each wave s t r u c t u r e  c o n s i s t s  o f  waves p r o g r e s s i n g  a l o n g  t h e  z a x i s  and p r o p a g a t i n g ,  a c c o r d -  
ing  t o  d i f f e r e n t  l aws ,  o u t s i d e  and i n s i d e  t h e  s t r i p  o f  w i d t h  2a.  Each s t r i p  moves w i t h  
speed  g cos  s  in  t h e  d i r e c t i o n  o f  i n c r e a s i n g  z .  We n o t e  t h a t  a s s o c i a t e d  w i t h  t h e  wave 
s t r u c t u r e  t h e r e  i s  a r a t e  o f  m o t i o n  o f  t h e  s t r i p  and a l l  t h e s e  r a t e s  a r e  l e s s  t h a n  t h e  r a t e s  
o f  m o t i o n  o f  t h e  c o r r e s p o n d i n g  zones  f o r  waves o f  t h e  c o n t i n u o u s  s p e c t r u m .  In  t h e  r e g i o n  t o  
t h e  r i g h t  o f  t h e  moving l i n e  z = a + u : t ,  t h e r e  a r e  waves o f  a l l  componen t s ;  in  t h e  zone t o  
t h e  l e f t  o f  t h e  l i n e  z = - a  + Un_zt  wave m o t i o n  s t i p u l a t e d  by t h e  a p p l i e d  p r e s s u r e  i s  ab-  
s e n t .  

I n  t h e  c o a s t a l  zone  a p r o g r e s s i v e  n o n - d e c a y i n g  wave p r o p a g a t e s  up t o  t h e  moving p o i n t  
z = a + Un_z t ,  a f t e r  which  waves ,  s t i p u l a t e d  by t h e  a p p l i e d  p r e s s u r e ,  a r e  l a c k i n g .  I n  c a s e  
t + ~ a s t a t i o n a r y  r e g i m e  i s  fo rmed on t h e  f r e e  s u r f a c e  o f  t h e  f l u i d ,  a r eg ime  c h a r a c t e r i z e d  
by t h e  f o l l o w i n g  p e c u l i a r i t i e s :  a l o n g  r a y s  l e a v i n g  t h e  p o i n t s  z = •  t h e r e  p r o p a g a t e  p r o -  
g r e s s i v e  d i v e r g i n g  waves d e c a y i n g  a c c o r d i n g  t o  t h e  law R~ z/a  and d e s c r i b e d  by f o r m u l a  (4)  
in  t h e  c o a s t a l  zone  t h e r e  p r o p a g a t e  p r o g r e s s i v e  n o n - d e c a y i n g  b o u n d a r y  waves d e s c r i b e d  by 
f o r m u l a  ( 5 ) ;  in  t h e  s h o r e  zone  t h e r e  p r o p a g a t e s  a p r o g r e s s i v e  n o n - d e c a y i n g  S t o k e s  wave de-  
s c r i b e d  by f o r m u l a  ( 6 ) .  

We d i r e c t  t h e  c u r v e  o f  a p p l i c a t i o n  o f  p r e s s u r e  p a r a l l e l  t o  t h e  s h o r e l i n e  and assume 
t h a t  t h e  p r e s s u r e  i s  a p p l i e d  in  t h e  s t r i p ,  i . e . ,  P (x ,  z ,  t )  = f ( x )  exp { i ( k z  - ~ t ) } ,  where 

/ (x)=]oIt ,  a ~ z ~ b ,  
[0~ 0 < x < a ,  x > b .  

We seek a solution of problem (i) in the form ~(r, O, z, t) = ~(r, O, k, t) exp ikz. 

Using the method presented in [3], when p = k we obtain, for the form of the free sur- 
face N = -P/pg + Nc + Nd 

~c =-~-~exp~(kz--~t) D (expAor)D (expAob-- (7 )  
0 

[ - -  exp Aoa)) ]/..~_ ]/-~_ ~ exp i(m - -  V ~ )  t + gg%-- + ~ X 

10 n-I (expAla--expAlb) 
~ld = ~ Z ezDt (exp Atr) Dz s~n(%7~-y~ j • (8) 

l=l 

X L W ~ - r  exp l (kz - -  V ~ ) t  + V~cos /13+ ~o 

2 J  ] 
•  F V o o s Z ~ t )  g k c ~  2 e x p i ( k z - - ~ t )  . 

We make a s t u d y  o f  waves o f  t h e  c o n t i n u o u s  s p e c t r u m  (7)  by a n a l o g y  w i t h  t h e  p rob lems  s t u d i e d  
i n  [2 ,  5] f o r  a f l u i d  o f  i n f i n i t e  d e p t h .  We w r i t e  

n c = ~lc(b) - qc(a). (9)  

Here ,  in  a r e g i o n  s e p a r a t e d  a s u f f i c i e n t  d i s t a n c e  f rom t h e  s t r i p  o f  a p p l i c a t i o n  o f  p r e s s u r e  
and the shoreline (r >> b), ~c(~) is given by the following expressions: 

(02 ( 0)2 ) 
1) I if i k ~ k l ,  k 1 - - - -  k l ~  then 

f g V 5  7 ' 
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1o I c 
~1~(• = 2 - ~  ~ for 1M I<u* t ,  

�9 O) ~' ( I~ ~ 4a~ ] / ~  exp i (kz --  ~ot) D ~ D ([ (m z sin a~,~, + 

q- (-- l)x' i ]/ o) ~ --  k~g=cosa~d,)-~ exp(  - 
O 2 

-7- (r sin a~i + • sin a~,i,) 

-~T - ; 

(i0) 

l ~ ie ~1 c (• = ~ ~ for u*t < I MI  < uot, 

I ~ - - 2  Z D~' D I ~ V-q-~(l~2+ql) a/~ rvi i~z_41,~ (Vg V~ + q~- O~,r 

- - ( - -  '~)'~"'(0)--1 (Vk  2 -~/~ sin a/~,j,-Ii-(--')Z' iqo~ COS gh.,j;)--i X 

�9 • ~,,p { -  g ~  + ql (, ~i~ ,,~j + ,~ ~i,, ,~,j,) + ~ ( g ~  t ( ~  + q~)*~' - q~M + 

, q~ -- roots of the gqn;. q -~- 

~1~(• for IMl>uot, 

':(ii) 

where  M = ( - - l ) Z r c o s a k j + ( - - l ) z ' •  u * =  g_L W(o4--k2g ~, uo = r  g2 
2(~ F t 08k~ 

(u*<Uo); ,  on moving{ 

lines parallel to the shoreline ([M[ = u0t), 

fO 
n~ (• = z-TF Ig, 

1 

& ~ - t r ( k ~ ) ~ u ~  1 /7 i  V~  - ( -  ~)~ 

' i( w )})) + ( - - 1 ) z ' i  g g c o s a ~ , j , ) - l e x p ( _ _  ~ / 3 k ( r s i n a ~ +  • i kM + k z + ( - - l ) ~  

(R= = 1 / ( r  -- • 4- z=, r --grams function); 

(12)  

2) If k I < k < ~2/g, then the picture of the wave motion becomes more simple: 

t~ !~ f~ I M l < ~ * t ,  n ~ ( •  fo r  I M l > ~ * t ;  

3) If ~2 ~ gk, which corresponds to the absence of poles in the integrand function in 
Eq. (7), then 

fo I ~ fo I ~ n ~ ( z ) = ~  2 for ] M l < u 0 t ,  N ~ ( •  a for  []1 I =  

= uot, Nr215 for I M t > uot 

(~c(K) represents the totality of m + 1 families, each of which consists of m + 1 straight 
lines and m + 1 reflections from the shore of quasiplanar waves propagating in the direc- 
tion of increasing r). in contrast to the case of an infinitely deep fluid in which there 
is one straight line and one reflection of a wave from the vertical wall, a complex wave 
picture develops in the presence of an inclined bottom: the straight line and the reflected 
wave are converted into a family of waves, which move relative to one another and superpose 
onto one another. Furthermore, the wave picture of the motion depends on the relationship 
of parameters k and m defining the system of pressures. 

When k < kl, there propagate in region r > b nondecaying progressive waves (described 
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by formulas (9), (i0)) up to the moving boundary r = b + unt, behind which there propagate 

in the strip u*t < r - b < u0t (u 0 > u*) waves (formulas (9), (II)), decaying according to 
r -I/2, in whose background we can single-out straight lines IMI = u0t , on which the wave am- 
plitude order ~r -I13 (formulas (9), (12)). We refer to waves possessing a rectilinear 
front of this kind as divergent waves. 

We now consider the case kl < k < ~2/g. Here, up to the moving boundary r = b + u't, 
there propagate progressive non-decaying waves; beyond the moving boundary there is an ab- 
sence of wave motion. We shall assume that k ~ m2/g. Then up to the boundary moving at the 
rate u 0 (r = b + u0t) there propagate progressive waves, decaying as r-i/2; in this back- 
ground we have movement of a divergent wave (IM[ = u0t) on which the order of amplitude 
~ r  - z / a  The wave picture closes with the divergent wave r = b + u0t , beyond which there is 
an absence of wave motion. 

We consider waves of the discrete spectrum, localized in the coastal zone, which are 
obtained in explicit form determined from formula (8). When k = m2/(g cos s singulari- 
ties in formula (8), i/(/gk cos s - m) and i/(gk cos s - m2), are mutually annihilating. 
For the coastal zone Ds As = DR(I). In the zone of the shore, the Stokes wave is the 
defining wave for all waves of the discrete spectrum; the wave motion corresponding to this 
wave is described by the expression 

t o 8 n _ i B ~ , n _ l ,  . 
~ - i  ~ apg ~ ~ (exp ( - -  kb cos ~) - -  exp ( - -  ka cos ~)) }< 

X V g - ~ - -  ~ exp V g - ~ n ~  X 

• + t) ] 

Waves  o f  t h e  d i s c r e t e  s p e c t r u m  c o n s i s t  o f  t h r e e  g r o u p s ,  o n e  o f  w h i c h  r e p e a t s  t h e  f o r m  
o f  t h e  t r a v e l i n g  p r e s s u r e ,  w h i l e  t h e  two r e m a i n i n g  w a v e s  a r e  s t i m u l a t e d  by  c h a r a c t e r i s t i c  
f u n c t i o n s  o f  t h e  d i s c r e t e  s p e c t r u m  and  a r e  d i r e c t e d  o p p o s i t e l y  t o  o n e  a n o t h e r .  I n  t h e  
c o a s t a l  z o n e  e a c h  o f  t h e s e  g r o u p s  c o n s i s t s  o f  m t e r m s ,  w h i l e  i n  t h e  z o n e  o f  t h e  s h o r e  t h e  
d e f i n i n g  wave  i n  t h e  g r o u p  i s  t h e  S t o k e s  w a v e .  

As t + ~ ,  a s t a t i o n a r y  r e g i m e  o f  wave  m o t i o n  i s  f o r m e d .  I f  k < ~ 2 / g ,  n o n d e c a y i n g  p r o -  
g r e s s i v e  w a v e s  p r o p a g a t e  i n  t h e  d i r e c t i o n  o f  i n c r e a s i n g  r when r > b ;  when k ~ ~ 2 / g ,  t h e  
wave  p i c t u r e  c h a n g e s :  i n  t h e  b a c k g r o u n d  o f  w a v e s  d e c a y i n g  a s  r - 1 / ~  d i v e r g e n t  w a v e s  p r o p a -  
g a t e  ( o r d e r  o f  a m p l i t u d e  r - ~ a ) .  

. 

APPENDIX 

Notation used in formulas (2) and (3): 

B(~)  - -  ( -  t1 n - h  - - ~  , ~ - ~  - (p + H + + x 

;x( I I  etg ~ p2 sin 2~[~ - I - ( - -  t)x iqs~ , 
0=1 

Bk~ = ( - -  1) n-~ I I  sin (a - -  l) ~ sin (o" + l) [3 X 

n+l 
~=(-I) 

c=n--h-l-1 
n--h 

X I - I  ctg (s[~ sin ((~ q- l) ~ cos ( ( [ -  l) 13, 

n--1 }--1 
- -  {2 (t ~- cos l~) ~(n-1) sin l~ ~ sin (~ + l) ~ sin (~ - -  I) ~ , 

A o = - -  (so sin ahj + (-- l) ~ iq cos ahj), Az = - -  p sin (akj q- l[$), 

aki = 2 (k - -  j) [3, s ~ =  ] / p -~+q~ ,  p = s ~ c o s ) ~ ,  q = s ~ s i n ~ ,  

I =  exp{i 4 (n - -  l)[(-- i)u + (-- l)x'] }. 

2. For operators D O and D z we agree that: for D O the summation extends over all in- 
dices for which-(-I)x cos akj > 0, for D I we assume (-I) X cos akj > 0. 
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BOUNDARY OF MONOTONIC AND OSCILLATORY CONVECTIVE 

STABILITY OF A HORIZONTAL FLUID LAYER 

V. I. Yudovich UDC 536.25:517.958 

The problem of small oscillations of a heat-conducting fluid which occupies a horizon- 
tal layer and is close to mechanical equilibrium is examined here. It is assumed that the 
layer is heated from above, so that the fluid is stably stratified. As is known [I, 2], 
for sufficiently high viscosity, all modes are monotonically damped (the decrements are 
positive), but if the viscosity is low enough, then there are also oscillatory modes, which 
correspond to complex decrements with positive real and nonzero imaginary parts. 

Here the limiting case of infinitely large Prandtl a and Rayleigh R numbers is studied, 
the Grashoff number G = R/o being finite and fixed in value. The problem reduces to analy- 
sis of the spectral boundary-value problem for a fourth-order ordinary differential equa- 
tion which is nonlinear in the spectral parameter, the decrement ~. The problem contains 
as auxiliary parameters the wavenumber ~ and G. For fixed ~ and G, it is easily estab- 
lished that there exists a countable set {~n}n=l of eigenvalues. In this case, the eigen- 
values are all real if G is sufficiently small. When G, as it grows, reaches a definite 
critical value, there appear a series of pairs of complex-conjugate eigennumbers % which, 
as usual, are determined from the appropriate transcendental equation. To analyze the equa- 
tion, the method of one-dimensional perturbations (perturbations of boundary conditions) is 
applied. This method was used by Jeffries [3] in the convection problem. The method leads 
directly to an expansion of the left side of the transcendental equation in partial frac- 
tions, which facilitates study: specificaly, it helps in isolating the roots. 

The minimum values in ~ of the critical Grashoff numbers G n for the appropriate values 
of e and % are determined. These are found separately for the even and odd modes with re- 
spect to the transverse variable. The asymptotes to G n for n § ~ are constructed. It is 
remarkable that even for n = i, the asymptotics yield good accuracy. 

There are grounds for believing that the critical value of the Grashoff number G, = 
729, which results in the first appearance of an oscillatory mode, corresponds to the tran- 
sition of turbulent convection at infinitely large Prandtl numbers [4]. 

i. Problem Statement. The stability spectrum ("spectrum of small oscillations") is 
determined in this case by the boundary-value problem 

(O ~ _ a2)2~ + ~2R0 = _ ~ ( D  2 _ ~2)~; ( 1 . 1 )  

(D 2 - a 2 ) 0  + ~ = --Xe0; ( 1 . 2 )  

= ~ '  = o = o (~ = ~ I ) .  ( i . 3 )  

Here R is the Rayleigh number with a minus sign, so that positive R corresponds to stabil- 
ity; ~2 is the square of the modulus of the horizontal wave vector; D = d/dz; % is the com- 
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